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Background - the Enneper-Weierstrass representation:

Let (i , S) be an immersed surface in R3. That is, S is a surface
and i : S → R3 is an immersion.

Let N : S → S2 be the unit normal vector field over i . N is
antiholomorphic

Let x3 : S → R3 be the third component. Let ω be the
holomorphic 1-form such that Re(ω) = dx3.

The pair (N, ω) uniquely determines i (up to translation).

This constitutes the Enneper-Weierstrass representation. Used,
for example, by Enneper and Costa.



Example: the Costa surface:
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The framework - part I:

Let (i , S) be an immersed surface in H3.

Let Ni : S → UH3 be the unit normal vector field over i .

Let AiX := ∇XNi be the shape operator of i .

Let Ki := Det(Ai ) be the extrinsic curvature of i .

When Ki = k > 0, we may suppose that Ai > 0 everywhere.

We say that i is locally strictly convex (LSC) when Ai > 0
everywhere.



Example: a (non-oriented) immersion:



Example: the unit normal vector field:



Example: “Circle Limit” M.C. Escher:



Surfaces in hyperbolic space:

Let (i , S) be a proper immersed surface in H3 constant extrinsic
curvature equal to k:

(1) When k > 1, (i ,S) is a geodesic sphere (Hopf);

(2) when k = 1, (i , S) is either a horosphere or a cylinder of points
equidistant to a complete geodesic (Volkov-Vladimirova, Sasaki);

(3) when k = 0, (i , S) is ruled; and

(4) no such surface exists for k < 0 (Weierstrass).

It is only for k ∈]0, 1[ that really interesting things happen.



The hyperbolic Gauss map:

Let UH3 be the unitary bundle over H3.

Let ∂∞H3 be the ideal boundary of H3.

We define the Gauss map:

g : UH3 → ∂∞H3; V 7→ γV (+∞),

where γV : R→ H3 is the unit geodesic such that:

γ′V (0) = V .

g(V ) is the point in ∂∞H3 towards which V points.



Example: “Circle Limit” M.C. Escher (with geodesics):



The Weierstrass map:

We identify ∂∞H3 with Ĉ.

We define the Weierstrass map, ϕi : S → Ĉ by:

ϕi = g ◦ Ni .

When i is LSC, ϕi is a local homeomorphism.



An inverse problem:

Let S be a surface. Fix k ∈]0, 1[. Let ϕ : S → Ĉ be a local
homeomorphism.

Under what conditions on ϕ does there exist a complete smooth
LSC immersion i : S → H3 such that:

Ki = k & φi = φ?

Observe that Ni defines an immersion from S into UH3.

We say that i is N-complete whenever the metric induced by Ni is
complete.

Under what conditions on ϕ does there exist an N-complete
smooth LSC immersion i : S → H3 such that Ki = k and ϕi = ϕ?.



Solving the inverse problem:

Furnishing S with the conformal structure φ∗C, we may assume
that S is a Riemann surface and that φ is a locally conformal
mapping.

Theorem A, Smith (2004)

Let S be a Riemann surface. Let φ : S → C be a locally conformal
map. If S is of hyperbolic type, then for all k ∈]0, 1[, there exists a
unique N-complete LSC immmersion i : S → H3 such that:

Ki = k & φi = φ.

Furthermore, i varies continuously with the data (S , φ).



Pointed ramified covers of the Riemann sphere:

A pointed ramified cover of Ĉ is a triplet (Σ,P, φ) where:

(1) Σ is a compact Riemann surface;

(2) P is a finite subset of Σ;

(3) φ : Σ→ Ĉ is a non-constant holomorphic map; and

(4) The set of critical points of φ is contained in P.

Near p ∈ P, φ(z) is locally conjugate to z 7→ zn, for a unique n.
We define:

Ord(φ; p) := n.



Moduli of pointed ramified covers:

If (Σ,P, φ) be a pointed ramified cover of Ĉ, then (Σ,P, φ) is
uniquely determined by:

(1) the topological type of Σ;

(2) the cardinality of P;

(3) the unordered vector of ramification orders (Ord(φ; p))p∈P ;

(4) the unordered vector of images of the critical points (φ(p))p∈P ;
and

(5) discrete combinatorial data.

In particular, the space of ramified covers of Ĉ is stratified by a
countable family of finite-dimensional complex manifolds.



Main result:

Theorem B, Smith (2006 + ε)

Let (Σ,P, φ) be a ramified covering of Ĉ. Denote S := Σ \ P. For
all k ∈]0, 1[ there exists a unique complete LSC immersion
ik : Σ \ P → H3 such that:

Kik = k , φik = φ.

Furthermore, ik has finite area.

Conversely, let i : S → H3 be a complete finite area LSC
immersion such that Ki = k ∈]0, 1[. Then the Riemann surface
(S , φ∗i Ĉ) is conformally equivalent to a compact Riemann surface
Σ with a finite set P of points removed and φi extends to a
holomorphic map from Σ into Ĉ.



In other words...

We define:

Ik :=


(i ,S) in H3 s.t.
i complete;
i LSC;
i finite area;
Ki = k.

 Hk :=


(Σ,P, φ) s.t.
Σ a compact R.S.;
P ⊆ Σ finite;

φ : Σ→ Ĉ holomorphic;
Crit(φ) ⊆ P.


The Weierstrass map defines a bijection:

Ik → Hk ; i 7→ φi .



The geometry of the ends:

Let (Σ,P, φ) be a ramified covering of Ĉ. Let S := Σ \ P. Let
i : S → H3 as in Theorem B.

For p ∈ P, there exists a neighbourhood Ω of p in Σ such that the
restriction of i to Ω \ p is a finite covering of a cylindrical cusp
around a geodesic:



Behind the scenes:

UH3 is a contact manifold.

The contact distribution carries a large family of almost-complex
structures.

For a suitable choice of complex structure, a smooth LSC
immersion i : S → H3 has Ki = k if and only if Ni is
pseudo-holomorphic.

The theory of smooth LSC immersed surfaces of constant extrinsic
curvature is a special case of the theory of pseudo-holomorphic
curves.



Labourie’s approach - lifts and tubes:

Let (i , S) be a proper complete LSC immersed hypersurface in H3.

Define the Gauss Lift, ı̂ : S → UH3 by:

ı̂ := N.

(̂ı,S) is an immersed surface in UH3.

Let Γ ⊆ H3 be a complete geodesic.

Let NΓ ⊆ UH3 be the bundle of unit normal vectors over Γ.

Let (̂, S) be an immersed surface in UH3.

We say that (̂,S) is a tube whenever ̂ is a covering map of NΓ
for some Γ.



Labourie’s compactness theorem:

Theorem C, Labourie (1997)

Let (Sn, in, xn) be a sequence of proper complete LSC immersed
hypersurfaces of constant extrinsic curvature equal to k . For all n,
let (Sn, ı̂n, xn) be the Gauss lift of (Sn, in, xn). If there exists a
compact subset ⊆ UH3 such that ı̂n(xn) ∈ K for all n, then there
exists a complete immersed surface (S∞, ı̂∞, x∞) towards which
(Sn, ı̂n, xn) subconverges.

Furthermore, either:

(1) (S∞, ı̂∞) is a tube; or

(2) i∞ := π ◦ ı̂∞ is an immersion, where π : UH3 → H3 is the
canonical projection.



Main steps of the proof:

Lemma D

Let (i , S) be a proper LSC immersed surface in H3 of constant
extrinsic curvature equal to k ∈]0, 1[. If (i ,S) has finite area, then
‖Ai (x)‖ tends to infinity as x diverges.

Lemma E

Let (i , S) be a proper LSC immersed surface in H3 of constant
extrinsic curvature equal to k ∈]0, 1[. Let F be the foliation of S
obtained by integrating the principal directions of least principal
curvature of i . For all x ∈ S , let Lx be the leaf of F passing
through x . If (i ,S) has finite area, then the geodesic curvature of
i(Lx) at x tends to 0 as x diverges.



Perspectives:

The energy of a pseudo-holomorphic is an important functional.

When i : S → H3 is a smooth LSC immersion with Ki = k, the
energy of the associated pseudo-holomorphic curve is given by:

E(i) =

∫
S

HdVol,

where H is the mean curvature of the immersion i .

However E(i) is infinite!



Perspectives - ctd.:

Fix P0 ∈ H3. For all R > 0, define:

SR = S ∩ BR(P0),

and:

ER(i) =

∫
SR

HdVol.

We expect ER(i) to grow asymptotically by:

E(i) = E1(i)R + E0(i) + E−1(i)R−1 + O(R−2).

We call E−1(i) the renormalised energy of i .

The renormalised energy perturbs known functionals (such as
cross-ratio), and may have applications to the study of the Kähler
geometry of the space of pointed ramified covers of Ĉ.



Obrigado!


