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(Belém – March 2008)



FIXED ENDS

Let us consider a stretched string which in rest position is represented

by the segment [α0, β0] in the x-axis of an orthogonal system of coordenate

in a plane x0u, with 0 < α0 < β0 . We suppose small vibrations and the

vibrations on the plane x0u, which we call vertical vibrations or vertical

deformations of the string.

We suppose τ0 the tension in the string at rest position [α0, β0], that is,

τ0 is the force per unite of area of the cross section of the string. At time

t > 0 the point (x, t), α0 < x < β0 , of the string, belongs to a plane curve

Γ(t) which equation is u = u(x, t). The tension is variable and at Γ(t) it

is τ , which is the force by unit of area of the cross section of Γ(t). The

tension is a vector ~τ with modulus τ . Let be γ0 = β0−α0 and S the lenght

of the curve deformation Γ(t) at time t. The variation of the tension is

τ − τ0 and the variation of the lenght of deformation is (S − γ0)
/
γ0 , the

mean deformation. The Hooke’s law says that τ − τ0 is a linear function

of (S − γ0)
/
γ0 , that is

τ − τ0 = k
S − γ0

γ0
· (1.1)

In general k is constant when the string is homogeneous, that is, its density,

mass per unit of lenght, is constant. Suppose that it is not homogeneous,

that is, k depends of α0 < x < β0 and of the time t > 0. Thus the Hooke’s

law is

τ − τ0 = k(x, t)
S − γ0

γ0

(1.2)
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Figure 1

The tension τ in the point (x, u), of the deformation curve Γ(t), is a

vector ~τ which has the direction of the tangent to Γ(t), at the point (x, u),

with modulus τ . We suppose Γ(t) regular and Γ(α0) = Γ(β0) = 0, the

string has fixed ends. See Fig. 1.

Let θ be the angle of the direction 0x with the vector ~τ . The components

of ~τ are:

τ sen θ and τ cos θ. (1.3)

By hypothesis we have small vertical deformations of the string [α0, β0].

Thus, we don’t need to consider the horizontal component, τ cos θ, which

is “very small”. Thus we don’t consider, in the present argument, the

horizontal component of ~τ .

Let d(x, t) be the density of the string at points x at time t, that is the

mass per unity of length. The variations of the tension ~τ gives origin to a

force on Γ(t) and, by Newton’s law, we have:

∂

∂t

(
γ0 d(x, t)

∂u

∂t

)
=

∂

∂x
(τ sen θ) , (1.4)
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γ0 d(x, t) is the mass of the string.

We supposed small vibrations or small deformations what means that

the gradient of deformations is small, that is, we must have:

∣∣∣∣
∂u

∂x

∣∣∣∣≪ 1. (1.5)

As a consequence of (1.5) we have sen θ ≈ tg θ =
∂u

∂x
·

From (1.2), the material is non homogeneous, the tension τ−τ0 depends

on x, t. We obtain, from (1.4)

∂

∂x
(τ sen θ) =

∂τ

∂x
sen θ + τ

∂ sen θ

∂x
,

or
∂

∂x
(τ sen θ) =

∂τ

∂x

∂u

∂x
+ τ

∂2u

∂x2
· (1.6)

Analysis of
∂τ

∂x

In fact, the length of the arc Γ(t) is

S =

∫ β0

α0

√

1 +

(
∂u

∂x

)2

dx. (1.7)

From the hypothesis (1.5) it follows that the series representation for

the function

√
1 +

(
∂u
∂x

)2
dx is uniformly convergent. Then it is reasonable

to consider the approximation
√

1 +

(
∂u

∂x

)2

≈ 1 +
1

2

(
∂u

∂x

)2

.
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Then, from (1.7), we obtain

S =

∫ β0

α0

[
1 +

1

2

(
∂u

∂x

)2
]
dx

or

S − γ0 =
1

2

∫ β0

α0

(
∂u

∂x

)2

dx. (1.8)

From(1.2) and (1.8) we have

τ − τ0 =
k(x, t)

2γ0

∫ β0

α0

(
∂u

∂x

)2

dx, (1.9)

then
∂τ

∂x
=

1

2γ0

∂k(x, t)

∂x

∫ β0

α0

(
∂u

∂x

)2

dx. (1.10)

From (1.6) and (1.10) we get

∂

∂x
(τ sen θ) =

[
1

2γ0

∂k(x, t)

∂x

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂u

∂x
+

+

[
τ0 +

k(x, t)

2γ0

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂2u

∂x2
(1.11)

Substituting (1.11) in (1.4) we get the partial differential equation:

∂

∂t

(
γ0 d(x, t)

∂u

∂t

)
−

[
1

2γ0

∂k(x, t)

∂x

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂u

∂x
−

−

[
τ0 +

k(x, t)

2γ0

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂2u

∂x2
= 0. (1.12)

Thus, (1.12) is the mathematical model for the physical problem of

small vertical vibrations of a stretched string fixed at the ends (α0, 0),

(β0, 0), when the material of the string is not homogeneous.
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We change the notation in order to formulate the mathematical problem

for (1.12). In fact, set
∣∣∣∣∣∣∣∣∣∣∣∣

γ0 d(x, t) = ρ(x, t), with ρ(x, t) ≥ ρ0 > 0

M(x, t, λ) = τ0 +
k(x, t)

2γ0
λ

N(x, t, λ) =
1

2γ0

∂ k(x, t)

∂x
λ =

∂

∂x
M(x, t, λ).

(1.13)

Thus the model (1.12) can be written in the form:

∂

∂t

(
ρ(x, t)

∂u

∂t

)
−M

(
x, t,

∫ β0

α0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
−

−N

(
x, t,

∫ β0

α0

(
∂u

∂x

)2

dx

)
∂u

∂x
= 0. (1.14)

Particular Cases

• Suppose the material of the string is homogeneous, that is, k(x, t) = k

constant for α0 ≤ x ≤ β0 and t ≥ 0. Thus
∂k

∂x
= 0, k is constant with

respect to x and we suppose it is also constant with respect to t. The

density d(x, t) is also constant and we represent d(x, t)γ0 by the constant

ρ. The model (1.12) reduces to

ρ
∂2u

∂t2
−

[
τ0 +

k

2γ0

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂2u

∂x2
= 0. (1.15)

This model was obtained by G. KIRCHHOFF – Vorlesungen über mecha-

nik, Tauber - Leipzig 1883. It is called Kirchhoff’s model.
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To observe that in the Kirchhoff’s model the string is homogeneous but

the tension is variable, with the time, that is, by (1.9) the tension at time

t is given by

τ(t) = τ0 +
k

2γ0

∫ β0

α0

(
∂u

∂x

)2

dx, (1.16)

where τ0 is the tension of the string [α0, β0] in the rest position. The term

k

2γ0

∫ β0

α0

(
∂u

∂x

)2

dx (1.17)

is the contribution when the tension is variable.

•Suppose now we have homogeneous material and the tension a cons-

tant τ0 , for each time t. In this case, we have not the contribution (1.17)

and τ = τ0 for all t. The model (1.15) of Kirchhoff reduces to

ρ
∂2u

∂t2
− τ0

∂2u

∂x2
= 0 (1.18)

or
∂2u

∂t2
= C2 ∂

2u

∂x2
, (1.19)

C2 =
τ0

ρ
·

The model (1.19) was obtained by Jean D’Alembert in 1741, cf. J.

D’ALEMBERT – Recherches sur les vibrations des cordes sonores - Opus-

cules Mathématiques, Tome Premier (1741) pp. 1-65 - Acad. Fran. des

Sciences, Paris, France.

We could say that (1.19) was the first partial differential equation des-

cribing problems of physics.
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The method above developed is when the string has fixed ends (α0, 0),

(β0, 0).

Suppose the ends of the string are variable. Let us consider the case

homogeneous.

VARIABLE ENDS

We suppose the homogeneous case but with variable tension. We con-

sider the ends variable with t > 0, that is,

0 < α(t) ≤ α0 < x < β0 ≤ β(t).

At time t > 0 we represent the string by [α(t), β(t)], with α(0) = α0 ,

β(0) = β0 , see Figure 2. Thus, the lenght of the string is γ(t) = β(t)−α(t)

at t > 0 and γ0 = β0 − α0 at t = 0.
u

xx0

( )t

0

Figure 2

0
( )t ( )t

parallel to 0 x

We employ the notation:

τ0 the tension at [α0, β0], rest position.

~τ(t) vector tension at the curve Γ(t), deformation of [α(t), β(t)], at

time t.
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τ(t) modulus of the vector ~τ(t) which has the direction of the tan-

gent vector at Γ(t).

τ̂(t) tension in the deformation [α(t), β(t)] of [α0, β0] at the time

t > 0.

The components of ~τ(t) at time t, are:

τ(t) sen θ vertical

τ(t) cos θ horizontal

By θ we represent the angle of the direction 0x with the tangent vector

to Γ(t) at time t, as in Figure 2.

By u(x, t) we represent the deformations at time t of x in [α(t), β(t)].

By hypothesis of small deformations we consider only the vertical com-

ponent.

The variations of this component are
∂

∂x
(τ(t) sen θ) and, by Newton’s

law, we have:
∂

∂x
(τ(t) sen θ) = m

∂2u

∂t2
(1.20)

m the mass of the string. We suppose the deformations are very small so

that the density of [α0, β0], [α(t), β(t)], Γ(t) are approximately the same.

Thus m = ρ γ0 is constant.

Analysis of the tension τ(t).

By Hooke’s law we obtain:
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• deformation of [α0, β0] into [α(t), β(t)]

τ̂(t) − τ0 = k
γ(t) − γ0

γ0
(1.21)

• deformation of [α(t), β(t)] into Γ(t)

τ(t) − τ̂(t) = k
S(t) − γ(t)

γ(t)
, (1.22)

S(t) is the lenght of the curve Γ(t).

We know that

S(t) =

∫ β(t)

α(t)

√

1 +

(
∂u

∂x

)2

dx =

=

∫ β(t)

α(t)

[
1 +

1

2

(
∂u

∂x

)2
]
dx =

= γ(t) +
1

2

∫ β(t)

α(t)

(
∂u

∂x

)2

dx.

This approximation can be done because it is supposed small deformation,

that is, small gradient of deformations,

∣∣∣∣
∂u

∂x

∣∣∣∣≪ 1.

Thus, we have

S(t) − γ(t) =
1

2

∫ β(t)

α(t)

(
∂u

∂x

)2

dx. (1.23)

Substituting (1.23) in (1.22) we obtain:

τ(t) − τ̂(t) =
k

2γ(t)

∫ β(t)

α(t)

(
∂u

∂x

)2

dx. (1.24)

From (1.21) and (1.24) we obtain the tension τ(t) on Γ(t) given by:

τ(t) = τ0 + k
γ(t) − γ0

γ0
+

1

2γ(t)

∫ β(t)

α(t)

(
∂u

∂x

)2

dx. (1.25)
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We go back to the equilibrium equation (1.20) we have

∂

∂x
(τ(t) sen θ) = τ(t)

∂

∂x
sen θ = τ(t)

∂

∂x
tg θ = τ(t)

∂2u

∂x2

and substituting in (1.20) we obtain

m
∂2u

∂t2
= τ(t)

∂2u

∂x2
· (1.26)

By (1.25) and (1.26) we have the mathematical model when the ends

are moving

∂2u

∂t2
−

[
τ0

m
+

k

mν0

(
γ(t) − γ0

)
+

1

2mν(t)

∫ β(t)

α(t)

(
∂u

∂x

)2

dx

]
po2u

∂t2
= 0.

(1.27)

Thus, (1.27) is the mathematical model for vertical vibrations of a stret-

ched string, homogeneous, when the ends are variable with the time t and

variable tension.

Particular Cases

• If α(t) = α0 , β(t) = β0 , for all t > 0, we have γ(t) = γ0 , t ≥ 0, then

(1.27) reduces to

∂2u

∂t2
−

[
τ0

m
+

1

2mν0

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂2u

∂x2
= 0,

which is the KIRCHHOFF model.

• If the tension is constant, τ(t) = τ0 for all t > 0, the perturbation in

Kirchhoff’s model is zero and we have

∂2u

∂t2
−
τ0

m

∂2u

∂x2
= 0,
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which is the D’ALEMBERT’s model.

We acknowledge Professor I-Shih Liu of IM-UFRJ for stimulating con-

versations when we investigated the variable ends.

MATHEMATICAL PROBLEMS

When we deduce mathematical models, from physical phenomenon, we

usually consider many approximations. Thus, we must formulate certains

mathematical problems about the model and prove that these mathemati-

cal problems formulated are well posed in the sense of JACQUES HADA-

MARD. It means that the problem has a non trivial solution, this soluti-

ons is unique and it depends continuously of the datum of the problem.

Otherwise, the problem is called non well posed. In the following we will

propose, for the models obtained above, same well posed problem. For

example, let us fixe our attention for D’Alembert (1.18). Set C2 =
τ0

ρ
as

was done.

Initial Boundary Value Problem. Find u(x, t), from α0 < x < β0 ,

0 < t < T , T > 0, into the real numbers R, satisfying:
∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
− C2 ∂

2u

∂x2
= 0 in α0 < x < β0 , 0 < t < T, T > 0

u(α0, t) = u(β0, t) = 0 for 0 < t < T

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) α0 > x < β0

(1.28)

The condition (1.28)2 says that the string has fixed ends. The (1.28)3 gives

conditions on the rest position u(x, 0) and initial velocity
∂u

∂t
(x, 0). They

are known function u0(x) and u1(x). With convenient choice of u0 , u1 we
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can prove that the boundary value problem (1.28) is well posed.

Cauchy Problem. It consists to investigate the well poseness of the pro-

blem – find u(x, t), but for −∞ < x < +∞, and 0 < t < ∞, solution of

the initial value problem
∣∣∣∣∣∣∣

∂2u

∂t2
− C2 ∂

2u

∂x2
= 0 for −∞ < x < +∞, t > 0

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(t), −∞ < x < +∞.

(1.29)

Let us remember how D’Alembert solved the equation

∂2u

∂t2
=
∂2u

∂x2

when we set C = 1. He wrote

∂

∂t

(
∂u

∂t

)
=

∂

∂x

(
∂u

∂x

)
.

We look for u(x, t), α0 ≤ x ≤ β0 , 0 ≤ t ≤ T and we suppose it regular.

Thus, its differential du is given by:

du = q dt+ p dx,

with

q =
∂u

∂t
and p =

∂u

∂x
·

Now let us consider the differential form

w = p dt+ q dx,

12



with p =
∂u

∂x
, q =

∂u

∂t
, u solution of D’Alembert equation, that is,

∂

∂x

(
∂u

∂x

)
=

∂

∂t

(
∂u

∂t

)

or
∂

∂x
p =

∂

∂t
q,

what says that w is a exact differential form. Then w is a differential of a

function v(x, t), that is,

d v = p dt+ q dx.

We obtain

d(u+ v) = (p+ q)d(x+ t)

d(u− v) = (p− q)d(x− t)

Then D’Alembert says that

u+ v = φ(x+ t)

u− v = ψ(x− t).

Thus the solution u(x, t) of the equation is

u(x, t) =
1

2
[φ(x+ t) + ψ(x− t)] (1.30)

φ, ψ “arbitrary” function, second D’Alembert.

The solution of the Cauchy problem (1.29) is

u(x, t) =
1

2
[u0(x+ t) + u0(x− t)] +

1

2

∫ x+t

x−t

u1(s) ds. (1.31)
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For details, we can see L.A. Medeiros - N.G. Andrade - Iniciação às

Equações Diferenciais Parciais, LTC, Rio de Janeiro, RJ, 1978.

Now, we propose the problems (1.28), initial boundary value problem,

and (1.29), Cauchy problem, for Kirchhoff’s operator, for the case of fixed

ends.

Initial Boundary Value Problem. Find u(x, t) from α0 < x < β0 ,

0 < t < T , T > 0, to the real numbers R, satisfying:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
−

[
τ0

ρ
+

k

2ργ0

∫ β0

α0

(
∂u

∂x

)2

dx

]
∂2u

∂x2
= 0

in α0 < x < β0 , 0 < t < T, T > 0

u(α0, t) = u(β0, t) = 0 for 0 ≤ t ≤ T

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), α0 < x < β0 .

(1.32)

The boundary value problem (1.32) is non linear and consequently we

have not chance to obtain solutions as for (1.28). The technique to solve

the problem (1.32) is more elaborate. In general, we obtain local solution

in t, that is, there exists T0 > 0 so that the solution exists on [0, T0). The

technique of weak solutions applying Sobolev’s spaces is employed.

Cauchy Problem. It consists to find u(x, t), ∞ < x < +∞, 0 < t <

∞ with values in the real numbers, solution of the initial value problem
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∣∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
−

(
τ0

ρ
+

k

2ργ0

∫ +∞

−∞

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0

for −∞ < x < +∞, t > 0

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), −∞ < x < +∞.

(1.33)

This is a problem formulated in the unbounded domain −∞ < x < +∞,

0 < t < ∞. The problem (1.32) is formulated in the bounded domain

α0 < x < β0 , 0 < t < T . When we investigate (1.32) and (1.33) by

techniques of functional analysis, we have compactness in (1.32) but not

in (1.33). This make a difference in the methods in classical analysis, in

the basic courses of partial differential equation. We employ Fourier series

in the bounded domain and Fourier transforms in the Cauchy problem.

The nonlinear boundary value and Cauchy problem, respectively (1.32)

and (1.33), can be formulated in general. Let us formulate the initial

boundary value problem (1.32). In fact, let Ω be a bounded open set of R
n

with boundary Γ, regular. The nonlinearity we represent by M(λ). Here

is a generalization of
τ0

ρ
+

k

2ρν0
λ which, by hypothesis, does not depends

of x and t. We consider the cylinder Q = Ω × (0, T ), T > 0, with lateral

boundary Σ = Γ× (0, T ). A point of R
n is represented by x = (x1, . . . , xn)

with xi real numbers. Thus, we look for a real function u(x, t), (x, t) ∈ Q

solution of
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∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
−M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u = f in Q

u = 0 on Σ,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω.

(1.34)

We represent by ∆ an ∇, respectively the Laplace operator in R
n and

the gradient.

The Cauchy problem in this general case is formulate as (1.32).

For results and abstract formulation of this problem, see: J.L. LIONS -

On some questions in boundary value problems of mathematical physics -

Contemporary developments in continuum mechanics and partial differen-

tial equations - ed. M. de La Penha and L.A. Medeiros, North Holland,

Amsterdam, (1978), pp. 285-346.

Variable Ends

Now let us consider the Kirchhoff’s model (1.27) when the ends of the

string move with the time, that is

∂2u

∂t2
−

[
τ0

m
+
k

m

γ(t) − γ0

γ0
+

1

2mγ(t)

∫ β(t)

α(t)

(
∂u

∂x

)2

dx

]
∂2u

∂x2
= 0.

We have 0 < α(t) < β(t), γ(t) = β(t)−α(t) and γ0 = β0−α0 , α0 = α(0),

β0 = β(0).

Let us define Q̂ the noncylindrical domain Q̂ = {(x, t) ∈ R
2;α(t) < x <

β(t), for 0 < t < T}. The boundary of Q̂ is

Σ̂ =
⋃

0<t<T

{
(α(t), β(t), t

}
.
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Set

a(t) =
τ0

m
+
k

m

γ(t) − γ0

γ0
,

b(t) =
k

2mγ(t)
,

and

L̂ u(x, t) =
∂2u

∂t2
−

[
a(t) + b(t)

∫ β(t)

α(t)

(
∂u

∂x

)2

dx

]
∂2u

∂x2
·

We propose the following boundary value problem for L̂.

Find the real function u(x, t) for (x, t) ∈ Q̂ solution of

∣∣∣∣∣∣∣∣∣∣

L̂u(x, t) = f(x, t) in Q̂,

u(x, t) = 0 for (x, t) ∈ Σ̂

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) for α0 < x < β0 .

(1.35)

With convenient hypothesis on α(t), β(t), u0, u1, f we prove existence

and uniqueness for (1.35), cf. L.A. Medeiros-J. Limaco-S.B. Menezes, Vi-

brations of Elastic Strings: Mathematical Aspects, J. of Computational

Analysis and Applications, V.4, No
¯ 2, (April 2002), Part One, pp. 91-127

and Vol. 4, No
¯ 3, (July 2002) Part Two, pp. 211-263.

About the model (1.14) can also be formulated as (1.32). For some

results see: Tania Rabello, Maria Cristina Vieira, L.A. Medeiros, On a

Perturbation of Kirchhoff Operator (submited for publication).
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INEQUALITIES

We also can formulate inequalities instead of equalities for the Kir-

chhoff’s operator or for D’Alembert operator. We consider the case of

variable ends. In fact, let us consider the notation of the initial boundary

value problem (1.35).

We want to find u(x, t), u : Q̂→ R solution of

∣∣∣∣∣∣∣∣∣∣

L̂u(x, t) ≥ f(x, t) in Q̂

u(x, t) = 0 on Σ̂

u(x, 0) = u0(x),
∂u

∂t
(x, o) = u1(x), in (α0, β0)

(1.36)

In this case we consider the convex set Kt defined, for t > 0, by

Kt =

{
w ∈ H1

0(Ωt).

∣∣∣∣
∂w

∂x

∣∣∣∣ ≤
1

γ(t)
a.e. in Ωt

}
.

To observe that H1
0(Ωt) is the Sobolev space on Ωt , Ωt = (α(t), β(t)) a

section of Q̂ at level t > 0. Thus, Kt is a convex set of H1
0(Ωt).

With the definition of solution for (1.36), we prove that with the choice

u0 ∈ H1
0(Ω0) ∩H

2(Ω), u1 ∈ Kt ⊂ H1
0(Ω)

and a convenient f , we obtain a solution unique, for (1.36) defined for all

(x, t) ∈ Q̂.

Remark 1. It is interesting to observe that the solution (1.35), also in the

cylindrical case, there exists for 0 < t < T0 < T , called local solution. To
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obtain a global solution it is necessary to consider initial data u0, u1 with

restrictions on their norms. Note that in the inequality (1.36) we obtain

solution for all t > 0 with less restriction on the initial data. For detail

see:

M.D.G. da Silva - L.A. Medeiros - A.C. Biazutti - Vibrations of Elastic

Strings: Unilateral Problem - J. of Compt. Analysis and Applications, Vol.

8, No
¯ 1 (2006), pp. 53-73.

19


